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Abstract
The time evolution of an arbitrary one-dimensional initial quantum state,
subject to a time-independent, spatially uniform classical force, is shown to
be that of a free-particle state, plus an overall motion arising from the classical
force. Bohmian mechanics is then used to extend this result to an arbitrarily
time-dependent, uniform force in three dimensions. The resulting solution is
completed and confirmed using conventional quantum mechanics.

PACS number: 03.65.−w

1. Introduction

The time evolution of a quantum system subject to a spatially uniform, time-dependent force
has attracted considerable interest of late. The exact propagator for this system has long been
known [1], as have a set of exact solutions (the Volkov solutions) [2–4]. Recent work [4–11]
focuses further on exact solutions and their properties. Here, in contrast, we obtain the general
result that the uniform force case may be effectively reduced to the free-particle case.

Section 2 employs analytical methods to examine the time evolution of an arbitrary one-
dimensional initial state subject to a spatially uniform, time-independent force. Section 3
introduces Bohmian mechanics, which is then used in section 4 to examine the evolution of
the probability distribution for an arbitrary three-dimensional initial state subject to a uniform,
arbitrarily time-dependent force. Section 5 extends the results of section 4 to quantum states.
In section 6 our results are completed and verified. Section 7 sets our results in the context of
classical expectations.

2. Time-independent forces

In 1930, deBroglie [12, 13] showed that the time evolution of a one-dimensional Gaussian
subject to a spatially uniform, time-independent force is precisely that of a free-particle
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Gaussian, apart from an overall translation and momentum boost identical to what the uniform
force would have imparted to a classical system. Andrews [14] has recently shown that this
also holds when the uniform force exhibits an arbitrary time dependence. These results,
although exact, rely on sophisticated mathematical tools, and are limited to Gaussians.

deBroglie’s result for a Gaussian may be extended to arbitrary initial states with a simple
analytical approach. Take the classical potential to be V = −FCLx, with FCL constant. The
momentum-space Schrödinger equation is

∂φ(p, t)

∂t
+ FCL

∂φ(p, t)

∂p
+

ip2

2mh̄
φ(p, t) = 0. (1)

The method of characteristics leads to the solution

φ(p, t) = g(p − FCLt) exp

{ −i

2mh̄

∫ t

0
(p − FCLt ′)2 dt ′

}
, (2)

where g(p) is an arbitrary initial momentum distribution. The corresponding free-particle
equation and its solution are

∂φf (p, t)

∂t
+

ip2

2mh̄
φf (p, t) = 0, (3)

φf (p, t) = g(p) exp

( −i

2mh̄
p2t

)
. (4)

The position-space wavefunctions are the Fourier transforms of (2) and (4):

�(x, t) = C

∫ ∞

−∞
g(p − FCLt) exp

( ipx

h̄

)
exp

{ −i

2mh̄

∫ t

0
(p − FCLt ′)2 dt ′

}
dp, (5)

�f (x, t) = C

∫ ∞

−∞
g(p) exp

{
i

(
px

h̄
− p2t

2mh̄

)}
dp. (6)

In the time interval [0, t], the classical displacement and momentum boost due to FCL

are �xCL = FCLt2/2m and �pCL = FCLt , respectively. Using the variable substitution
p → y + �pCL, then, (5) becomes

�(x, t) = C exp

(−iF 2
CLt3

6mh̄

)
exp

(
ix�pCL

h̄

)∫ ∞

−∞
g(y) exp

{
i

(
y(x − �xCL)

h̄
− y2t

2mh̄

)}
dy.

(7)

Comparing (6) and (7) we obtain, up to an unimportant overall phase factor,

�(x, t) = exp

(
ix�pCL

h̄

)
�f (x − �xCL, t) . (8)

Thus, the time evolved free and ‘forced’ states are identical, except that the classical motion
is superimposed on the latter.

3. Bohmian mechanics and forces

In sections 4 and 5, we will use Bohmian mechanics to extend our results. Detailed treatments
of Bohmian mechanics are readily available [13, 15–17]—here we present only those features
necessary for our discussion. We start with the time-dependent Schrödinger equation:

ih̄
∂�(x, t)

∂t
= −h̄2

2m
∇2�(x, t) + V (x, t)�(x, t). (9)
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We may write �(x, t) in polar form, �(x, t) = R(x, t) exp{iS(x, t)/h̄}, where the modulus,
R, and the phase, S/h̄, are real functions. Substituting this form into (9), taking derivatives,
and separating into real and imaginary parts, we obtain two coupled equations:

−∂S

∂t
= (∇S)2

2m
+ V − h̄2

2m

(∇2R

R

)
(10)

∂(R2)

∂t
= −∇ ·

((
R2

m

)
∇S

)
. (11)

Note that R2 = |�|2; that is, R2 is simply the position probability distribution. Equation (11)
may be cast into a continuity equation for the probability density, while (10), except for its
last term, resembles the classical Hamilton–Jacobi equation:

−∂SCL

∂t
= (∇SCL)2

2m
+ V, (12)

where SCL is Hamilton’s principal function [18]. In Bohmian mechanics we regard (10) as a
modified Hamilton–Jacobi equation for the quantum state, which now describes an ensemble of
possible trajectories, with well-defined positions and momenta, corresponding to an ensemble
of possible initial conditions of a real quantum particle. Because the position probability
distribution for this real particle is given by |�(x, t)|2, we obtain the usual quantum-mechanical
predictions for position measurements.

The last term in (10) may be regarded as a quantum potential energy, Q, with which we
may associate a quantum force, FQ:

Q = − h̄2

2m

(∇2R

R

)
FQ = −∇Q. (13)

Note that both Q and FQ generally differ for different Bohmian trajectories in a state. The
dynamics is determined by the total (classical plus quantum) force F:

F = −∇(V + Q). (14)

Although the actual particle occupies only one Bohmian trajectory (although we do not know
which one), F acts on each trajectory as though it were occupied. Thus, the state both
determines the position probability distribution and influences the dynamics.

Solutions to the Schrödinger equation describe quantum states and their time evolution,
incorporating within them quantum effects, the effects of the classical potential and the overall
motion of the state. In Bohmian mechanics we may disentangle these effects. From (13),
Q and FQ depend only on the modulus, R, and are independent of the phase (but only in
a limited sense; cf. section 4). Thus, the quantum effects arise only from the ‘shape’ of
the state. From (14), we see that the total force F is separable into classical and quantum
contributions. This feature may be of considerable benefit, even though the interplay between
the two contributions may in general be very complicated.

Bohmian mechanics may also be formulated without reference to forces. In the Hamilton–
Jacobi formulation of classical mechanics, one obtains a relation between SCL and the
canonical momentum, pCL [18]. Analogous to this is a relation between S and the Bohmian
momentum p:

pCL = ∇SCL ⇐⇒ p = ∇S. (15)

If we take p = ∇S as our dynamical law, there need be no mention of forces. In actual
calculations using this approach, we must first obtain the wavefunction using standard
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quantum-mechanical methods, and then use p = ∇S to obtain the Bohmian trajectories.
Since this formulation of Bohmian mechanics is less wedded to classical mechanics, invoking
neither forces nor Newton’s second law, some researchers see it as preferable to the quantum
force formulation.

4. Time-dependent forces

The quantum force formulation of Bohmian mechanics provides a new means to time evolve
the quantum state, by applying Newton’s second law to the separable quantum and classical
forces. The result of section 2 can be easily obtained, and extended, using this approach.

We first revisit the time evolution of an arbitrary initial state, denoted by �(x, 0), in the
spatially linear, time-independent potential V = −FCLx. From (14), we have

F = −∇(V + Q) = ∇
{
FCLx +

h̄2

2m

(∇2R

R

)}

= FCLx̂ +
h̄2

2m
∇

(∇2R

R

)
. (16)

One cannot conclude on the basis of separability alone that FCL cannot influence FQ. In
general, FCL will alter the momentum distribution (and thus, by (15), the phase). This, over
time, may alter the modulus R, so FQ will differ from its value were FCL = 0. This illustrates
two effects referred to earlier: the complicated interplay between classical and quantum forces,
and the limited sense in which Q and FQ are independent of the phase.

In the case at hand, however, FCLx̂ is spatially uniform. It thus imparts an identical
momentum boost to each Bohmian trajectory. As a result, FCLx̂ will translate the modulus
R, but it cannot alter the momenta of the Bohmian trajectories relative to each other, nor
can it alter R’s shape. Because FCL cannot alter R’s shape, FQ must remain identical for
corresponding trajectories in the free and forced states. Thus, the two states’ moduli must
time evolve identically, apart from the overall translation and boost arising from FCLx̂.

Now consider a classical force FCL(t) = FCL(t)ê(t), where both FCL(t) and the unit vector
ê(t) exhibit arbitrary time dependences. That is, FCL(t) is spatially uniform, but arbitrarily
time dependent in both magnitude and direction.

Our results for the time-independent force, FCLx̂, rely only on the spatial uniformity of
FCLx̂ and the separability of FCLx̂ and FQ. But FCL(t) and FQ are also separable, and FCL(t)

remains spatially uniform for all t. Thus, FCL(t) affects each trajectory identically, as did
FCLx̂. As for FCLx̂, then, FCL(t) can translate the modulus R, but it cannot alter its shape.
Thus, the free and forced moduli must again time evolve identically, except for the overall
translation and momentum boost due to FCL(t). Then we may write

P(x, t) = Pf (x − �xCL(t), t), (17)

where P and Pf are the forced and free position probability distributions, respectively. Here

�xCL(t) =
∫ t

0

�pCL(t ′)
m

dt ′, (18)

�pCL(t) =
∫ t

0
FCL(t ′) dt ′. (19)

That is, �xCL(t) and �pCL(t) are the classical displacement and momentum change,
respectively, due to FCL(t).
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5. Quantum states

Section 4 focused on the time evolution of Bohmian ensembles and probability distributions,
rather than that of the quantum state per se. Our results thus inform us of the behaviour of the
modulus R, but what of the phase? That is, does the entire state—modulus and phase—time
evolve as the corresponding free-particle state, �f , plus classical effects due to FCL(t)?

A uniform classical force imparts a corresponding uniform boost to each trajectory. Thus,
the Bohmian momentum distribution of the forced ensemble is identical to that of the free
ensemble, apart from �pCL(t), the boost due to FCL(t). But Bohmian momenta are determined
solely by the phase, through p = ∇S. Thus, the two states’ phases must correspond apart from
the boost (and possibly an unimportant additive term, denoted by S0/h̄, which may depend on
t, but not on x). We may now construct an analogue to (17) in terms of quantum states:

�(x, t) = �f (x − �xCL(t), t) exp(i�pCL(t) · x/h̄) exp(iS0/h̄). (20)

Although we have not proven (20), we regard it as well grounded in the preceding qualitative
argument. (Note that (20) and (8) are analogues, the latter being restricted to one dimension
and time-independent forces.)

Our use of Bohmian mechanics made the generalization to three-dimensional, time-
dependent forces simple. Our discussion has been somewhat mathematical in nature. But
once one grasps the separability of the classical and quantum forces, and sees how these forces
act on an ensemble of Bohmian trajectories, the physics becomes almost obvious, and easily
transparent to a truly conceptual understanding.

6. Confirmation

For our spatially uniform, arbitrarily time-dependent force, (9) becomes

ih̄
∂�(x, t)

∂t
= −h̄2

2m
∇2�(x, t) − {F(t) · x}�(x, t). (21)

To confirm our Bohmian analysis, we substitute (20) into (21). This leads to

dS0 = −�p2
CL(t)

2m
dt, (22)

where �p2
CL(t) = �pCL(t) · �pCL(t). Solving for S0, we obtain the explicit form of the state:

�(x, t) = �f (x − �xCL(t), t) exp(i�pCL(t) · x/h̄) exp

( −i

2mh̄

∫ t

0
�p2

CL(t ′) dt ′
)

. (23)

We have thus both determined the phase and confirmed our Bohmian analysis. In sum, the
only effects of a three-dimensional, arbitrarily time-dependent, spatially uniform classical
force are to translate and boost the corresponding free-particle quantum state as it would a
classical particle.

We remark that some recent results are in fact special cases of our general result.
Gaussian wave-packet solutions for the free particle are textbook fare [19]; Luan and Tang
[10] find such solutions exist for the time-dependent linear potential. Dunkel and Trigger
consider corresponding initial minimum-uncertainty Gaussians for both the free-particle case
and a sinusoidally time-dependent linear potential; they find that the position/momentum
uncertainty products and the joint entropies are identical [11].
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7. Classical perspective

Classical physics provides further insight into our results. Consider an arbitrary distribution
of free classical particles. Apart from shifts in momentum and position, this distribution
is identical when viewed from an inertial frame and from a frame subject to an arbitrary
acceleration—in particular, an acceleration opposite that produced by our uniform force
FCL(t).

In addition, if our free distribution is viewed from a frame that is so accelerated, it will
be indistinguishable from the same distribution subject to FCL(t), but viewed from an inertial
frame. We thus find that, when viewed from an inertial frame, the free and uniformly-forced
classical distributions must be identical (up to momentum and position shifts).

By analogy, we expect free and uniformly-forced quantum probability distributions to
be identical, apart from an appropriate translation, when viewed from an inertial frame. The
forced quantum state should include a phase change reflecting the momentum shift. This is
precisely what we found in (8), (20) and (23).
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[3] Volkov D 1935 Über eine Klasse von Lösungen der Diracschen Gleichung Z. Phys. 94 250
[4] Bauer J 2002 Comment on ‘Solution of the Schrödinger equation for the time-dependent linear potential’

Phys. Rev. A 65 036101
[5] Guedes I 2001 Solution of the Schrödinger equation for the time-dependent linear potential Phys. Rev.

A 63 034102
[6] Feng M 2001 Complete solution of the Schrödinger equation for the time-dependent linear potential Phys. Rev.

A 64 034101
[7] Bekkar H, Benamira F and Maamache M 2003 Comment on ‘Solution of the Schrödinger equation for the

time-dependent linear potential’ Phys. Rev. A 68 016101
[8] Guedes I 2003 Reply to ‘Comment on ‘Solution of the Schrödinger equation for the time-dependent linear

potential” Phys. Rev. A 68 016102
[9] Rau A and Unnikrishnan K 1996 Evolution operators and wave functions in a time-dependent electric field

Phys. Lett. A 222 304
[10] Luan P and Tang C 2005 Lewis–Riesenfeld approach to the solutions of the Schrödinger equation in the presence

of a time-dependent linear potential Phys. Rev. A 71 014101
[11] Dunkel J and Trigger S 2005 Time-dependent entropy of simple quantum model systems Phys. Rev. A 71 052102
[12] deBroglie L 1930 An Introduction to the Study of Wave Mechanics (London: Methuen)
[13] Holland P 1993 The Quantum Theory of Motion (Cambridge: Cambridge University Press)
[14] Andrews M 2003 Total time derivatives of operators in elementary quantum mechanics Am. J. Phys. 71 326
[15] Bohm D 1952 A suggested interpretation of the quantum theory in terms of “hidden” variables, I Phys.

Rev. 85 166
Bohm D 1952 A suggested interpretation of the quantum theory in terms of “hidden” variables, II Phys. Rev. 85

180
[16] Bohm D and Hiley B 1993 The Undivided Universe (London: Routledge)
[17] Cushing J 1994 Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony (Chicago, IL:

University of Chicago Press)
[18] Goldstein H 1980 Classical Mechanics 2nd edn (Reading, MA: Addison-Wesley)
[19] Shankar R 1994 Principles of Quantum Mechanics 2nd edn (New York: Plenum)

http://dx.doi.org/10.1007/BF01390840
http://dx.doi.org/10.1007/BF01331022
http://dx.doi.org/10.1103/PhysRevA.65.036101
http://dx.doi.org/10.1103/PhysRevA.63.034102
http://dx.doi.org/10.1103/PhysRevA.64.034101
http://dx.doi.org/10.1103/PhysRevA.68.016101
http://dx.doi.org/10.1103/PhysRevA.68.016102
http://dx.doi.org/10.1016/0375-9601(96)00657-3
http://dx.doi.org/10.1103/PhysRevA.71.014101
http://dx.doi.org/10.1103/PhysRevA.71.052102
http://dx.doi.org/10.1119/1.1531579
http://dx.doi.org/10.1103/PhysRev.85.166

	1. Introduction
	2. Time-independent forces
	3. Bohmian mechanics and forces
	4. Time-dependent forces
	5. Quantum states
	6. Confirmation
	7. Classical perspective
	Acknowledgment
	References

